Photo of a Raft Slab

What is a Raft Slab

What is a Raft Slab

A raft slab is reinforced concrete slab that is strengthened with integral concrete beams in both directions.

Usually used as the foundation for new houses and extensions, raft slabs in Australia are designed to comply with Australian standard AS2870.

We call the strengthening beams strip footings (because they run in parallel strips). The beams around the outside are called edge beams.

How Thick is a Raft Slab

The slab portion of a raft footing and slab is normally 100mm (4 inches) thick. Sometimes the slab portion is made thicker, up to 150mm (8 inches) thick, to make it stronger or able to span further. 

What is the Minimum Thickness of a Slab

In residential buildings, the minimum thickness of a slab is 85mm (3.35 inches) in waffle slab construction and 100mm (4 inches) in raft slab construction.

How is a Raft Slab Built

Here’s the process for building a raft slab for a house.

  1. Set out. Using survey equipment, the outer boundaries of the house are marked out. Smart builders use a surveyor to make sure the house is in the correct location!
    House site for a new raft slab
    Raft Slab Survey Complete. Photo courtesy of Titan Homes Mackay.
  2. Edge beams. The footings around the outside of the house are dug into the ground. 300mm wide edge beams are common. The depth of the edge beam depends on the reactivity of the soil.
  3. Steel reinforcement in placed into the edge beams. The steel can’t be close to the ground or it will rust and fail – so concreters use plastic supports called ‘bar chairs’ to held the steel away from the ground.
  4. The edge beam is filled with concrete up to ground level. Steel bars are placed into the wet concrete at 800mm centres and are left sticking out of the footing to tie the edge beam and the slab concrete together. The exact location of these bars isn’t very important, but their spacing is.
    Raft slab footings have been poured
    Raft Slab Edge Beams Poured. Photo courtesy of Titan Homes Mackay.
  5. Once the edge beam concrete has hardened, the concreters will place the sand that goes under the slab to make it the correct height. Sand or crusher dust or decomposed granite are all acceptable in my opinion. The sand has to be compacted so that it is firm and hard because it has to support the wet concrete of the slab before it cures.
    Raft slab plastic and mesh being placed
    Raft slab being prepared by a builder. Photo courtesy of Titan Homes Mackay.
  6. Once the sand is placed everywhere under the slab, the concreters remove the sand from where the strip footings run. If the surface of the slab is high enough, the strip footings will be above the original ground level. Otherwise the concreters have to dig through the sand and remove some of the original ground to get a deep enough strip footing.
  7. The concreters place a black plastic sheet into the strip footings and over all of the ground under the slab. The edges of the sheets of black plastic have to be lapped and taped because the plastic stops the ground sucking moisture out of the wet concrete before it cures and also helps stop moisture rising out of the ground and through the concrete.
  8. Then the concreters place steel reinforcement into the strip footings and sheets of slab reinforcement everywhere in the slab. Again the concreters use plastic bar chairs to make sure the reinforcement is not touching the plastic and is not sitting so high it is poking out the top of the slab. The slab reinforcement is very important because it helps control the size of cracks in the surface of the raft slab. See this post on shrinkage cracks.
    Raft slab construction
    Raft slab strip footing and slab mesh. Photo courtesy of Titan Homes Mackay.
  9. Around the outside of the raft slab – above the edge beams – the concreters use formwork or concrete blocks to make the sides of the slab. If the ground is sloping, sometimes the concrete blocks are laid before the sand is placed – but that makes it very difficult to place and compact the sand properly.
  10. The concreters pour concrete into all of the strip footings and the slab using concrete trucks and concrete pumps. They make the surface smooth and level (called screeding) and then allow the concrete to dry (called curing). If the concrete dries too quickly, the surface can crack – just like mud cracks when the surface dries when it is still wet underneath – so the concreters often use special chemicals call ‘curing compounds’ to make sure the concrete all cures at the same time.
    Raft slab concrete is curing
    Raft slab concrete has been poured. Photo courtesy of Titan Homes Mackay.
  11. The concrete reaches its full design strength in less than 28 days (normally about 23 days) but the slab can be walked on and worked on well before that. The formwork is normally removed the day after the concrete is poured.

Who Designs Raft Slabs

Raft slabs are designed by structural engineers experienced in residential construction.

There are lots of rules for working out the depth and spacing of strip footings in a raft slab so it is very important to get them right.

An experienced structural engineer can give you an accurate and cost-effective raft slab designed to suit your site.

How Can Cornell Engineers Help

Cornell Engineers has been designing raft footings and slabs since 2003. Our footing and slab designs comply with AS2870-2011, the Australian residential footings and slabs code.

When we design raft slabs we ensure your slab is suitable for your site by designing your slab to comply with the soil conditions on your site as described in your soil test. 

We save you money by making sure our raft slabs drawings are easy to understand and easy to build from.

Contact Us or Get a Quote.

Leave a Reply